Integration of Silver Iontophoresis Principles in a Device for Bacterial and Viral Infection Treatments, Wound-Healing, Tissue Repair and Regeneration

Richard Malter, Research Institute of Global Physiology, Behavior and Treatment, USA. Director, Electromedicine Clinic & Research Lab, Australia.

Email: contact@electromedicine.org.au

James Woessner, MD PhD, Physiatrist, Tucson, AZ, USA. Senior Advisor, Electromedicine Clinic & Research Lab, Australia.

Email: jameswoessner@yahoo.com

The Medical Need

- Germane issues
- "Infections", mostly internal, are often untreatable
- Wounds more chronic
- Reasons
- Ineffectiveness of agents and/or methods
- Exacerbated by superbugs
- Agent delivery problems
- Overall ecology of local microenvironments
- Viruses little known

Emerging Conceptsof "Infection"

Single pathological microbe	>>	Microenvironment ecology
All microbes "bad": Presence/Absence	>>	Symbiotic need for "good" microbes: Trillions of microbes in complex ecologies
Removal / Killing	>>	Promoting apoptosis & cellular/tissue normalization
Simplified gross area and organ concepts	>>	Infinitely complex and dynamic cascading multi-category interacting events

Concepts of Treatment

Iontophoretic ion propulsion	>>	 Multiple electromagnetic (and) signaling effects: Direct internal EF/EMF effects via Ag+s External EF/EMF effects
Diffusion and circulatory transport • Delivery to (deep) lesions problematic: • circulatory problems • Barriers • abnormal scar tissue • organ coverings	>>	 Direct transport/delivery to targeted area(s): changes affected microenvironments no dependence or interference with GI tract painless, sterile, non-invasive minimum-effective-dose control
Single speciality care	>>	Multi-specialty care

Superbugs

- Bacterial species and strains that have mutated and evolve resistance to antibiotics over decades
- Due to shotgun utilization of antibiotics
- Sped up by close housing of food animals and patients in hospitals for more infections and then more antibiotics
- (Ineffective) antibiotics may be working as placebos
- Antibiotics as growth promoting agents in animals
- Microbial distribution in microenvironments is dynamic with complex ecological relations: New adaptive organisms with 'good' and 'bad' characteristics
- Very limited indication that microbes can adapt to silver over many decades

Internal Abnormalities

- Infections of organs
 - Lung
 - Liver
 - Kidneys
 - Heart
 - Intestines
 - Nerves
 - Muscles
 - Brain
 - Ear
 - Reproductive
 - Etc

- Abscesses
 - Abdominal cavity
 - Brain
 - Lung
 - Liver
 - Subcutaneous
 - Oral
 - Etc.
- Bones
- Sepsis

Stages of Healing

Proliferative

- Inflammatory (acute)
 - red
 - hot
 - swollen
 - painful

- scar tissue
- differentiating cells/tissue
- normalized cells/tissue
- Maturation/Remodeling
 - clastic processes
 - blastic processes

Wound Care

- Describe wound location, size and other characteristics (electrode placement)
- Identify wound etiology (non SIS things, e.g. systemic nutrition, detoxification)
 - Maximize toxin removal and nutrient provision (follow with BDORT but ancillary part of comprehensive program)
- Assay wound environment characteristics (BDORT; lab micro-assays)
 - Identify colonized pathological microbes (to plan details of dynamic individualized approach)
 - Determine antibiotic sensitivity (BDORT testing; lab culturing)
- Maintain optimal environment for wound healing locally (SIS Ag+ & EF/EMF affects)
- Monitor and dynamically modify treatment program (as above)

Iontophoresis: Targetable Delivery System

lon (Gk) = "(to) go" i.e. moving object

Phoresis (Gk) = "transport, carry"

Silver lontophoresis = electromotive transport of silver ions (Ag+s) into a living body

Ag+ effects - #1

- Broad spectrum, stand-alone microbial agent, including antibiotic resistant (MRSA, VRE, etc), gram-negative/positive bacteria
- Interruption of bacterial/viral membrane/capsid processes^{1,2}
 - Increases membrane permeability
 - Increases reactive oxygen species (ROS)
 - Interacts with:
 - Fe homeostasis
 - Transcription processes
 - Respiratory processes
- Enhances standard antibiotic activity
- Virus inhibiting effects, including adenovirus, HIV-1, herpes family, influenza virus, Hep B, etc

^{1.} Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine 2013;5(190):190ra81.

^{2.} Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005 Jun 29;3:6.

Ag+ effects - #2

Example of silver particles binding with a virus capsule:

Ag+s attach to protein-specific sites of virus²

Matching protein-related spatial arrangements on surface of HIV-1 virus

^{2.} Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005 Jun 29;3:6.

Ag+ effects - #3-1

Becker's Ag+ microenvironment signalling tissue regeneration 'trick'

- Iontopheretic system for stimulation of tissue healing and regeneration US Patent 5814094 A
- Harrington DB, Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res. 1973 Jan;76(1):95-8.

Ag+ effects - #3-2

Microenvironment signaling for multi-type tissue healing and regeneration

[Becker et al, 1998]

FIRST STAGE REACTION Ag ions combine with peptides, proteins, etc. (24-48 hours) antibacterial, antifungal, antiviral effects SECOND STAGE REACTION Ag binds to cells (fibroblasts, etc.) (48-72 hours)de-differentiation of cells (including fibroblasts) to form embryonic cells THIRD STAGE REACTION Ag complexes with collagen (fibroblasts, etc.) (72 + hours)activation de-differentiated cells blastem:

Therapeutic Index

Lethal dose vs therapeutic concentration ratio of Ag+ within FDA approved antibiotics therapeutic index ranges¹

^{1.} Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine. 2013;5(190):190ra81.

(Ag lontophoresis CLINICAL APPLICATION

1. Electro-physiological parameters Internal infections/lesions: Skin

Electrical resistance (R): Intact skin

Approximate range

DRY SKIN: $10M\Omega$ +

WET SKIN: $10-100k\Omega$

Wound Stimulation - Summary

- 1) Silver ions for 'infection' prevention and treatment
- Real-time measurement/calculation of woundgenerated electric field
 - Bioelectrically matching magnitude and polarity voltage drop generation at wound edges:
 - » Real-time scaled supplementation or replacement
- 3) Becker's tissue regeneration method
 - Silver ions for fibroblast de-differentiation and more 'stem-like' cells for repair
 - Voltage real-time scaling to wound/electrode size
 Operation regardless of 'infection' status

Finding and testing Ag+ microcurrents for microbial/microenvironment effects

- Clinical presentations
 - Symptomatic → asymptomatic
- Laboratory pathology results
- Organ/tissue/cellular/microenvironment assays
 - Bi-Digital O-Ring Test (BDORT) resonance phenomena [Omura Y] antimicrobial effect predictive testing
 - BDORT reference control substance mono- polyclonal antibody slides
 - Microbe antigen samples

Stimulation Current Comparison

'Medicine'	Drug solution iontophoresis	Silver-nylon (Ag+) iontophoresis
Stimulation current range (amperes)	3-5 milli ampere (approximate)	0.5-10 micro ampere (approximate)

Narrow 'window' of effective Ad delivery without applied voltage damaging skin - and so increasing skin electrical resistance.

2. Electro-physiological parameters: Wounds

Electrical resistance (R): Wound

→ 1st - 3rd degree, full thickness

Wound bed

5kΩ Granulation Tissue 50kΩ

New epidermis

Periwound/wound edge

20kΩ Granulation Tissue 100kΩ

Approximate range

Trans-epidermal-epithelial Potential (TEP) ~20-70millivolts

TEP (V)

Ohms Law: Current of Injury (COI) =

R

Current of Injury (COI): Amperes

Current of Injury (COI): Voltage Supplementation

Resistance (Ω)

ELECTRIC FIELD GENERATED ACROSS WOUND GEOMETRY

Superficial Wound COI VOLTAGE SUPPLEMENTATION: ELECTRODE POSITIONING

Deeper Wound COI SUPPLEMENTATION VOLTAGE: ELECTRODE POSITIONING

Wound Stimulation Summary

- 1) Silver ions for 'infection' prevention and treatment
- 2) Real-time measurement/calculation of woundgenerated electric field
 - Bioelectrically matching magnitude and polarity voltage drop generation at wound edges:
 - » Real-time scaled supplementation or replacement
- 3) Becker's tissue regeneration method
 - silver ions for fibroblast de-differentiation and more 'stem-like' cells for repair
 - voltage real-time scaling to wound/electrode size

Operation regardless of 'infection' status

Bioelectric & Electronics: Basic Solutions

- Delivery along pathway of least resistance
 - Anatomical cross-sectioning with electrodes
 - Low voltage 'gated' sweat gland ion channels
- Microcontroller regulated self-adaptive circuitry:
 - Nanoampere accuracy constant ultra-low microcurrent
 - Real-time measurements of electrical skin/wound resistance (Ω)
 - Voltage producing & switching
 - Self-adaptive temperature calibration
 - Electrode stimulation efficiency (ESE) smart software

ELECTRODES: FDA 510(K)/EU(CE) Class I conformity Ag-nylon material

DEMONSTRATION OF CLINICAL EFFICACY: Illustrative Case Studies

1. Acute Periodontitis

2-3 days continuous near 24 hour use

- Asymptomatic:
 - No pain
 - No swelling
- No antibiotics nor painkillers
- Coincidental gum regeneration (Becker's stem cell 'trick'?)

1-1. Jaw electrode placement

2. Symptomatic H. Pylori

16 days continuous near 24 hour use (prototype SIS equipment)

- C14 Urea Breath Test positive
- No antibiotics, painkillers, proton pump inhibitors
- BDORT negative
- 90% reduction of symptoms
- C14 Urea Breath Test negative

2-2. H Pylori electrode placement

3. Infected oozing antibioticresistant Cesarean section surgical scar

Positive Electrode placement directly on wound

- 7 days: no signs of infection or swelling (prototype SIS equipment)
- Complete healing, not requiring any further treatment
- No pain/painkillers

4. Symptomatic cervical Human Papiloma Virus (HPV) infection

10-12 days of continuous near 24 hour use

- Asymptomatic
- Pathology testing not obtained/unavailable
- BDORT negative

4-1. Cervical electrode placement

5. Symptomatic ear infection in 7yo child

12 hours of near continuous use

- Asymptomatic
- Recurrence after several weeks and repeat treatment; again asymptomatic.

5-1. Ear electrode placement

6. Internal chronic scar tissue reversal: Decades of Mycobacterium tuberculosis induced lung scarring:

Several weeks continuous treatment

6-1. Lung electrode placement

Major effect proximal to +ve electrode

6-1. CAT SCAN IMAGE: APICAL SCARRING

6-2. CAT SCAN IMAGE COMPARISON: NO SCARRING

Medical Need Fulfilment

- Iontophoresis precedences established for surface and internal tissue targets
- Data based development
- Ag+ iontophoresis via low amperage direct current
- Delivery through variable:
 - Distance
 - Tissue type: varying electrical impedances
 - Time-frames
- Supported by case study results

SIS machines

- Dedicated and portable silver iontophoresis stimulators (SIS) and electrode system
- RCM, FCC, CE electronics conformity tested
- Bacterial & viral infections
- Wound protection & healing
- Tissue healing & regeneration
- Patent pending devices and technology.

siselectromed.com