DATA BASED DEVELOPMENT: SUPPORTING RESEARCH

The development of the SIS machines and SIS electrode technology has been strongly clinical practice and data based over nearly a decade, drawing extensively from the international medical-scientific journal literature, patents in the USA and Australia, clinical studies and hospital applications spanning three decades.

JOURNAL ARTICLES

RESEARCH ARTICLES: SILVER IONTOPHORESIS

SILVER IONTOPHORESIS

Becker RO, Spadaro JA. Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. J Bone Joint Surg Am. 1978 Oct;60(7):871-81. Read article >

Nand S, Sengar GK, Nand S, Jain VK, Gupta TD. Dual use of silver for management of chronic bone infections and infected non-unions. J Indian Med Assoc. 1996 Mar;94(3):91-5. Read article >

Webster DA, Spadaro JA, Becker RO, Kramer S. Silver anode treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1981 Nov-Dec;(161):105-14. Read article >

Becker RO. Processes and products involving cell modification. US 4528265 A. Jul 9, 1985. Read article >

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J Trauma. 1988 Oct;28(10):1488-92. Read article >

Satyanand, Saxena AK, Agarwal A. Silver iontophoresis in chronic osteomyelitis. J Indian Med Assoc. 1986 May;84(5):134-6. Read article >

Uezono H. Effect of weak direct current with silver electrodes on bacterial growth. Nihon Seikeigeka Gakkai Zasshi. 1990 Sep;64(9):860-7. Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan. Read article >

Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis. 1996 Feb;173(2):495-8. Read article >


Schwass DR, Meledandri CJ. Enhanced Penetration of Silver Nanocomposite Assemblies into Dentine Using Iontophoresis: Toward the Treatment of Dental Caries. ChemPlusChem 2014, 79, 1671–1675. Read article >


LOW VOLTAGE IONTOPHORESIS

Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J. 1998 Feb;74(2 Pt 1):843-56. Read article >

Kasting GB, Bowman LA. DC electrical properties of frozen, excised human skin. Pharm Res. 1990 Feb;7(2):134-43. Read article >


RESEARCH ARTICLES: SILVER-NYLON ANTIMICROBIAL DEVICE

SILVER-NYLON: EFFECTIVE ANTIMICROBIAL DEVICE

Deitch EA, Marino AA, Malakanok V, Albright JA. Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma. 1987 Mar;27(3):301-4. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >

MacKeen PC, Person S, Warner SC, Snipes W, Stevens Jr SE. Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother. Jan 1987; 31(1): 93–99. Read article >

Deitch EA, Marino AA, Gillespie TE, Albright JA. Silver-nylon: a new antimicrobial agent. Antimicrob Agents Chemother. 1983 Mar;23(3):356-9. Read article >

Krieger BR, Davis DM, Sanchez JE, Mateka JJ, Nfonsam VN, Frattini JC, Marcet JE. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis Colon Rectum. 2011 Aug;54(8):1014-9. Read article >

Barillo DJ, Pozza M, Margaret-Brandt M. A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns. 2014 Dec;40 Suppl 1:S24-9. Read article >

Abboud EC, Settle JC, Legare TB, Marcet JE, Barillo D3, Sanchez JE. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns. 2014 Dec;40 Suppl 1:S30-9. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >

RESEARCH ARTICLES: SILVER ION—BROAD SPECTRUM ANTIMICROBIAL

SILVER IONS AND NANOPARTICLES: EFFECTS ON BACTERIA AND VIRUSES

Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial Effects of Silver Electrodes with Weak Direct Current. Antimicrobial Agents and Chemotherapy 1974;6(5):637-642. Read article >

Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells. Antimicrobial Agents and Chemotherapy 1976;9(2):357-358. Read article >

Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine 2013;5(190):190ra81. Read article >

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997 Oct;25(4):279-83. Read article >

Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012 Aug 8;12(8):4271-5. Epub 2012 Jul 9. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Chen N, Zheng Y, Yin J, Li X, Zheng C. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods. 2013 Nov;193(2):470-7. Epub 2013 Jul 22. Read article >

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology 2010;8:1. Read article >

Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine 2013;8:4303-4314. Read article >

Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005 Jun 29;3:6. Read article >

Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17-34. Read article >

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003 Jun;27(2-3):341-53. Read article >

RESEARCH ARTICLES: LOW INTENSITY (AMPERAGE) DIRECT CURRENT

ANTIMICROBIAL AND IMMUNE CELL EFFECTS

Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS One. 2013;8(2):e55118. doi: 10.1371/journal.pone.0055118. Epub 2013 Feb 4. Read article > Open access article >

Ruiz-Ruigomez M, Badiola J, Schmidt-Malan SM, Greenwood-Quaintance K, Karau MJ, Brinkman CL, Mandrekar JN, Patel R. Direct electrical current reduces bacterial and yeast biofilm formation. International Journal of Bacteriology. Volume 2016 (2016). Read article >

Liu WK, Brown MR, Elliott TS. Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother. 1997 Jun;39(6):687-95. Read article > View or download PDF >

Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett DJ, Mandrekar JN, Patel R. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species. PLoS One. 2016 Dec 19;11(12):e0168595. doi: 10.1371/journal.pone.0168595. eCollection 2016. Read article >

Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015 Aug;59(8):4610-5. Read article >

Schmidt-Malan SM, Brinkman CL, Greenwood-Quaintance KE, Karau MJ, Mandrekar JN, Patel R. Activity of Electrical Current in Experimental Propionibacterium acnes Foreign-Body Osteomyelitis. Antimicrobial Agents and Chemotherapy. 2017;61(2):e01863-16. Read article >

Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009 Oct;53(10):4064-8. doi: 10.1128/AAC.00432-09. Epub 2009 Aug 3. Read article > View or download PDF >

Rowley BA, McKenna JM, Chase GR, Wolcott LE. The influence of electrical currents on infecting microorganism in wounds. Ann N Y Acad Sci. 1974;238:543-51. Read article >

Kalinowski DP, Edsberg LE, Hewson RA, Johnson RH, Brogan MS. Low-voltage direct current as a fungicidal agent for treating onychomycosis. J Am Podiatr Med Assoc. 2004 Nov-Dec;94(6):565-72. Read article >

Thibodeau EA, Handelman SL, Marquis RE. Inhibition and killing of oral bacteria by silver ions generated with low intensity direct current. J Dent Res. 1978 Sep-Oct;57(9-10):922-6. Read article >

Hall RE, Bender G, Marquis RE. In vitro effects of low intensity direct current generated silver on eukaryotic cells. J Oral Maxillofac Surg. 1988 Feb;46(2):128-33. Read article >

Tronstad L, Trope M, Hammond BF. Effect of electric current and silver electrodes on oral bacteria. Endod Dent Traumatol. 1985 Jun;1(3):112-5. Read article >

Hoare JI, Rajnicek AM, McCaig CD, Barker RN, Wilson HM. Electric fields are novel determinants of human macrophage functions. J Leukoc Biol. 2016 Jun;99(6):1141-51. doi: 10.1189/jlb.3A0815-390R. Read article >

Lin F, Baldessari F, Gyenge CC, et al. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 2008;181(4):2465-2471. Read article >

Merriman HL, Hegyi CA, Albright-Overton CR, Carlos J Jr, Putnam RW, Mulcare JA. A comparison of four electrical stimulation types on Staphylococcus aureus growth in vitro. J Rehabil Res Dev. 2004; 41(2):139–146. Read article >

Schmidt‐Malan SM, Brinkman CL, Karau MJ, Brown RA, Waletzki BE, Berglund LJ, Schuetz AN, Greenwood‐Quaintance KE, Mandrekar JN, Patel R. Effect of Direct Electrical Current on Bones Infected with Staphylococcus epidermidis. JBMR Plus, 3: e10119. doi:10.1002/jbm4.10119. Read article >

Kim YW, Subramanian S, Gerasopoulos K, Ben-Yoav H, Wu HC, Quan D, Carter K, Meyer MT, Bentley WE, Ghodssi R. Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. NPJ Biofilms Microbiomes. 2015 Sep 23;1:15016. Read article >

Roohandeh M, Bamdad T. Inactivation of herpes simplex virus type 1 & adenovirus type 5 by direct electric current at a biocompatible level in vitro. Clin Lab. 2011;57(7-8):489-95. Read article >

Kumagai E, Tominaga M, Harada S. Sensitivity to electrical stimulation of human immunodeficiency virus type 1 and MAGIC-5 cells. AMB Express. 2011;1(1):23. Published 2011 Aug 8. doi:10.1186/2191-0855-1-23. Read article >

Asadi MR, Torkaman G. Bacterial Inhibition by Electrical Stimulation. Adv Wound Care (New Rochelle). 2014;3(2):91-97. Read article >

Barranco SD, Spadaro JA, Berger TJ, Becker RO. In vitro effect of weak direct current on Staphylococcus aureus. Clin Orthop Relat Res. 1974;(100):250-255. Read article >

Paré JF, Martyniuk CJ, Levin M. Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis. NPJ Regen Med. 2017 May 26;2:15. doi: 10.1038/s41536-017-0019-y. Read article >


APOPTOSIS EFFECTS

Wartenberg M, Wirtz N, Grob A, Niedermeier W, Hescheler J, Peters SC, Sauer H. Direct current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species. Bioelectromagnetics. 2008 Jan;29(1):47-54. Read article >

Kurokawa M, Sakagami H, Kokubu F, Noda H, Takeda M, Adachi M. Induction of apoptotic cell death by direct-current treatment in human leukemic cell lines. J Cancer Res Clin Oncol. 1997;123(7):370-6. Read article >

Kim HB, Ahn S, Sim SB. Apoptosis by direct electric field (DEF) and nanosecond pulsed electric field (nsPEF) in tumor cells and tumor tissues. The 30th International Conference on Plasma Science, 2003. ICOPS 2003. IEEE Conference Record - Abstracts., Jeju, South Korea, 2003, pp. 436-. Read article >

Nakamura Y, Takahashi K, Shimetani A, Sakagami H, Nishikawa H. Cytotoxicity of Direct Current with Antibacterial Agents against Host Cells In Vitro. J Endod. 2005 Oct;31(10):755-8. Read article >

Veiga VF, Nimrichter L, Teixeira CA, Morales MM, Alviano CS, Rodrigues ML, Holandino C. Exposure of human leukemic cells to direct electric current: generation of toxic compounds inducing cell death by different mechanisms. Cell Biochem Biophys. 2005;42(1):61-74. Read article >

David SL, Absolom DR, Smith CR, Gams J, Herbert MA. Effect of low level direct current on in vivo tumor growth in hamsters. Cancer Res. 1985 Nov;45(11 Pt 2):5625-31. Read article >

Turler A, Schaefer H, Schaefer N, Wagner M, Maintz D, Qiao JC, Hoelscher AH. Experimental low-level direct current therapy in liver metastases: influence of polarity and current dose. Bioelectromagnetics. 2000 Jul;21(5):395-401. Read article >

Jarm T, Cemazar M, Steinberg F, Streffer C, Sersa G, Miklavcic D. Perturbation of blood flow as a mechanism of anti-tumour action of direct current electrotherapy. Physiol Meas. 2003 Feb;24(1):75-90. Read article >

Schaefer N, Schafer H, Maintz D, Wagner M, Overhaus M, Hoelscher AH, Türler A. Efficacy of direct electrical current therapy and laser-induced interstitial thermotherapy in local treatment of hepatic colorectal metastases: an experimental model in the rat. J Surg Res. 2008 May 15;146(2):230-40. Epub 2007 Aug 8. Read article >

Griffin DT, Dodd NJ, Moore JV, Pullan BR, Taylor TV. The effects of low-level direct current therapy on a preclinical mammary carcinoma: tumour regression and systemic biochemical sequelae. British Journal of Cancer. 1994;69(5):875-878. Read article >

Miklavcˇicˇ D, Jarm T, Cˇemazˇar M, Sersˇa G, An DJ, Belehradek J, Mir LM. Tumor treatment by direct electric current Tumor perfusion changes. Bioelectrochemistry and Bioenergetics. Volume 43, Issue 2, August 1997, Pages 253-256. Read article >

Miklavčič D, Šemrov D, Valenčič V, Serša G, Vodovnik L. Tumor Treatment by Direct Electric Current: Computation of Electric Current and Power Density Distribution. Electro- and Magnetobiology, Volume 16, 1997 - Issue 2. Read article >

Jiménez RP, Pupo AE, Cabrales JM, Joa JA, Cabrales LE, Nava JJ, Aguilera AR, Mateus MA, Jarque MV, Brooks SC. 3D Stationary electric current density in a spherical tumor treated with low direct current: an analytical solution. Bioelectromagnetics. 2011 Feb;32(2):120-30. Read article >

Ciria HMC, González MM, Zamora LO, et al. Antitumor effects of electrochemical treatment. Chin J Cancer Res. 2013 Apr; 25(2): 223–234. Read article >

RESEARCH ARTICLES: DC MICROCURRENT THERAPY

DC THERAPY

Gokal R, Armstrong K, Durant J, Todorsky W, Miller L. The Successful Treatment of Chronic Pain Using Microcurrent Point Stimulation Applied to Scars. Int J Comp Alt Med 10(3): 00333, 2017. Read article >

Chevalier A, Armstrong K, Gokal R. Detailed Heart Rate Variability, Exercise Tolerance, Cortical and Vas Pain Scale Analysis of Two Forms of Electro-Therapy Applied To A Patient with Chronic Back Neuropathic Pain. J Cell Mol Biol 2017 1: 001. Read article >

Armstrong K, Gokal R, Todorsky W, Durant J. The Successful Treatment of Chronic Pain Using Microcurrent Point Stimulation Applied to Battlefield Acupuncture Protocol. Med - Clin Res & Rev. 2018; 2(2): 1-4. Read article >

Lee BY, AL-Waili N, Stubbs D, Wendell K, Butler G, AL-Waili T, AL-Waili A. Ultra-low microcurrent in the management of diabetes mellitus, hypertension and chronic wounds: Report of twelve cases and discussion of mechanism of action. Int J Medical Sciences. 2010;7(1):29-35. Read article > Read report with images >

Fujiya H, Ogura Y, Ohno Y, Goto A, Nakamura A, Ohashi K, Uematsu D, Aoki H, Musha H, Goto K. Microcurrent electrical neuromuscular stimulation facilitates regeneration of injured skeletal muscle in mice. J Sports Sci Med. 2015 May 8;14(2):297-303. Read article >

Fujiya H, Goto K. New aspects of microcurrent electrical neuromuscular stimulation in sports medicine. The Journal of Physical Fitness and Sports Medicine. 2016 Volume 5 Issue 1 Pages 69-72. Read article >

Armstrong K, Gokal R, Durant J, Todorsky T, Chevalier A, FaShong B. Detailed Autonomic Nervous System Analysis of Microcurrent Point Stimulation Applied to Battlefield Acupuncture Protocol. Medical Acupuncture. Apr 2017, Vol. 29, No. 2 Original Articles. Read article >

Fox LM, Murakami M, Danesh H, Manini AF. Battlefield acupuncture to treat low back pain in the emergency department. American Journal of Emergency Medicine. June 2018, Volume 36, Issue 6, Pages 1045–1048. Read article >

Byers M, Shao X, Bozorgi F, Begum S, Wertheimer D, Khalil R, Poumalek P, Taheri N. Battlefield Acupuncture (BFA) For Pain Management in a VA Community Living and Rehabilitation Center. March 2018, Volume 19, Issue 3, Page B14. Read article >

Prof. Tim Watson. Microcurrent Therapy. Electrotherapy on the web - Educational resources for practitioners, students and educators. Visit website >

Electrotherapy: evidence-based practice, edited by Tim Watson. Churchhill Livingstone, Elsevier Ltd, 2008, pages 41-45. Google books preview >

Becker RO. Evidence for a Primitive DC Electrical Analogue System Controlling Brain Function, PDF pages 9-16. Read article > Download article PDF >

RESEARCH ARTICLES: DIELECTROPHORESIS

DIELECTROPHORESIS

Archer S, Rixon FJ, Morgan H. Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys J. 1999 May; 76(5): 2833–2842. Read article >

Bonincontro A, Melucci-Vigo G, Risuleo G.Biosci Rep. Mouse polyomavirus mediated effects on the infected cell membrane studied by dielectric spectroscopy. J Microw Power Electromagn Energy. 2001;36(2):67-75. Read article >

Berardi V, Aiello C, Bonincontro A, Risuleo G. Alterations of the plasma membrane caused by murine polyomavirus proliferation: an electrorotation study. J Membr Biol. 2009;229(1):19-25. doi:10.1007/s00232-009-9172-6. Read article >

RESEARCH ARTICLES: ANTIBIOTIC RESISTANT BACTERIA SUPERBUGS—EFFECTS ON OF SILVER ION

ANTIBIOTIC-RESISTANT BACTERIA

Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine. 2013;5(190):190ra81. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Lara HH, Ayala-Núñez NV, Turrent L-D-CI, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. April 2010, Volume 26, Issue 4, pp 615–621. Read article >

Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112: 841–852, 2012. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr, Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Thapa R, Bhagat C, Shrestha P, Awal S, Dudhagara P. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials. 2017;16:39. Read article >

Lkhagvajav N, Yasa I,Celik E, Koizhaiganova M, Sari O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Digest Journal of Nanomaterials and Biostructures Vol. 6, No 1, January-March 2011, p. 149-154. Read article > View or download PDF >

Gupta LK, Jindal R, Beri HK, Chhibber S. Virulence of silver-resistant mutant of Klebsiella pneumoniae in burn wound model. Folia Microbiol (Praha). 1992;37(4):245-8. Read article >

Kalan LR, Pepin DM, Ul-Haq I, Miller SB, Hay ME, Precht RJ. Targeting biofilms of multidrug-resistant bacteria with silver oxynitrate. Int J Antimicrob Agents. 2017 Jun;49(6):719-726. Read article >

Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová Š, Froning JP, Havrdová M, Prucek R, Zbořil R, Kvítek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. 2016 Jun 1;142:392-9. Read article >

Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015 Oct 5;13:64. Read article >

Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci. 2017 Mar 6;18(3). Read article >

Zou L, Lu J, Wang J, Ren X, Zhang L, Gao Y, Rottenberg ME, Holmgren A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol Med. 2017 Jun 12. Read article >

Percival SL, Thomas J, Linton S, Okel T, Corum L, Slone W. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds. Int Wound J. 2012 Oct;9(5):488-93. Read article >

RESEARCH ARTICLES: BIOELECTRIC WOUND HEALING

BIOELECTRIC WOUND HEALING

Illingworth CM, Barker AT. Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin. Phys. Physiol. Meas. 1 87, 1980. Read article >

Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 1982 Mar;242(3):R358-66. Read article >

LerCinovic A, Bobanovic F, Vodovnik L. Endogenous potentials in two different models of human skin injuries. Bioelectrochemistry and Bioenergetics, 30 (1993) 221-227. Read article >

Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996 Jan;109 (Pt 1):199-207. Read article >

Spence DW, Pomeranz B. Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiol Meas. 1996 May;17(2):57-69. Read article >

Kloth LC, McCulloch JM. Promotion of wound healing with electrical stimulation. Adv Wound Care. 1996 Sep-Oct;9(5):42-5. Read article >

Karba R, Dejan Šemrov, Vodovnik L, Benko H, Sˇavrin R. DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics, Volume 43, Issue 2, August 1997, Pages 265-270. Read article >

Reger SI, Hyodo A, Negami S, Kambic HE, Sahgal V. Experimental wound healing with electrical stimulation. Artif Organs. 1999 May;23(5):460-2. Read article >

McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005 Jul;85(3):943-78. Read article >

Talebi G, Torkaman G, Firoozabadi M, Shariat S. Effect of anodal and cathodal microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs. J Rehabil Res Dev. 2008;45(1):153-9. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJS. Imaging the electric field associated with mouse and human skin wounds. Wound Repair and Regeneration. 2008;16(3):432-441. Read article >

Balakatounis KC, Angoules AG. Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury. Eplasty. 2008;8:e28. Read article >

Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol.2009 Aug;20(6):674-82. Read article >

Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010 Mar 1;5(3):468-75. Read article >

Messerli MA, Graham DM. Extracellular Electrical Fields Direct Wound Healing and Regeneration. Biol Bull. 2011, Aug;221(1):79-92. Read article >

Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen. 2011 Sep-Oct;19(5). Read article >

Thakral G, LaFontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabetic Foot & Ankle. 2013;4:10.3402/dfa.v4i0.22081. Read article >

Reid B, Zhao M. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. Advances in Wound Care. 2014;3(2):184-201. Read article >

Ud-Din S, Bayat A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2(4), 445-467. Read article >

Hunckler J, de Mel A. A current affair: electrotherapy in wound healing. J Multidiscip Healthc. 2017;10:179-194. Published 2017 Apr 20. doi:10.2147/JMDH.S127207. Read article >

Reid B, Song B, Zhao M. Electric currents in Xenopus tadpole tail regeneration. Dev Biol. 2009 Nov 1;335(1):198-207. doi: 10.1016/j.ydbio.2009.08.028. Read article >

Dueland R, Hoffer RE, Seleen WA, Becker RO. The effects of low voltage current on healing of thermal third degree wounds. Cornell Vet. 1978;68(1):51-59. Read article >

Sun YS. Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations. Biomed Res Int. 2017;2017:5289041. doi:10.1155/2017/5289041. Read article > View or download PDF >

Karba R, Šemrov D, vodovnik L, Benko H, Sˇavrin R. DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics, Volume 43, Issue 2, August 1997, Pages 265-270. Read article > View or download PDF >

Šemrov D, Karba R, Valenčič V. DC electrical stimulation for chronic wound healing enhancement. Part 2. Parameter determination by numerical modelling. Read article > View or download PDF >

Gault WR, Gatens PF Jr. Use of low intensity direct current in management of ischemic skin ulcers. Phys Ther. 1976;56(3):265-269.Read article >

Carley PJ, Wainapel SF. Electrotherapy for acceleration of wound healing: low intensity direct current. Arch Phys Med Rehabil. 1985 Jul;66(7):443-6. Read article >

Huckfeldt R, Flick AB, Mikkelson D, Lowe C, Finley PJ. Wound closure after split-thickness skin grafting is accelerated with the use of continuous direct anodal microcurrent applied to silver nylon wound contact dressings. J Burn Care Res. 2007;28(5):703-707. Read article >

Lukaski HC, Moore M. Bioelectrical impedance assessment of wound healing. J Diabetes Sci Technol. 2012;6(1):209-212. Published 2012 Jan 1. Read article >

RESEARCH ARTICLES: CELL MODIFICATION

CELL MODIFICATION

Becker RO, Murray DG. A method for producing cellular dedifferentiation by means of very small electrical currents. Trans N Y Acad Sci. 1967 Mar;29(5):606-15. Read article > View or download PDF >

Harrington DB, Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res. 1973 Jan;76(1):95-8. Read article >

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Becker RO. Effects of Electrically Generated Silver Ions on Human Cells and Wound Healing. Journal Electro- and Magnetobiology. Volume 19, 2000 - Issue 1, Pages 1-19. Read article >

Becker RO. Induced dedifferentiation: a possible alternative to embryonic stem cell transplants. NeuroRehabilitation. 2002;17(1):23-31. Read article >

Levin M. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Seminars in cell & developmental biology. 2009;20(5):543-556. Read article >

Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013 Aug 19;8(8):e71660. Read article >

RESEARCH ARTICLES: SECOND MESSENGER MODULATION & ACTIVATION

CYCLIC AMP



LOW FREQUENCY EF STIMULATION

Sontag W, Dertinger H. Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsulfoxide-differentiated HL-60 cells to modulated low frequency electric currents. Bioelectromagnetics. 1998;19(8):452-458. Read article >

Sontag W. Response of cyclic AMP by DMSO differentiated HL-60 cells exposed to electric interferential current after prestimulation. Bioelectromagnetics. 2004 Apr;25(3):176-84. doi: 10.1002/bem.10183. Read article >

Knedlitschek G, Noszvai-Nagy M, Meyer-Waarden H, Schimmelpfeng J, Weibezahn KF, Dertinger H. Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat Environ Biophys. 1994;33(2):141-147. Read article >

Weibezahn KF, Knedlitschek G, Sontag W, Johannes CS, Gottwald E, Dertinger H. (1999). Changes of Intercellular Communication Induced by Alternating Electric Fields Correlate with Changes of cAMP. 10.1007/978-1-4615-4867-6_104. Read article >

W Sontag. Modulation of cytokine production by interferential current in differentiated HL-60 cells. Bioelectromagnetics. 2000 Apr;21(3):238-44. doi: 10.1002/(sici)1521-186x(200004)21:3<238::aid-bem10>3.0.co;2-y. Read article >

W Sontag. Release of mediators by DMSO-differentiated HL-60 cells exposed to electric interferential current and the requirement of biochemical prestimulation. Int J Radiat Biol. 2001 Jun;77(6):723-34. doi: 10.1080/095530000110046376. Read article >

Ozcan J, Ward AR, Robertson VJ. A comparison of true and premodulated interferential currents. Arch Phys Med Rehabil. 2004;85(3):409-415. doi:10.1016/s0003-9993(03)00478-7. Read article >

Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics. 2016;13(2):295-310. doi:10.1007/s13311-015-0415-1. Read article >

Sontag W, Weibezahn KF. IL-8 release of HL-60 cells treated with electric currents of different wave forms. Electromagn Biol Med. 2007;26(3):191-205. doi:10.1080/15368370701572738. Read article >

Ross CL, Teli T, Harrison BS. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model. Electromagn Biol Med. 2016;35(3):206-213. Read article >

EFFECTS ON PAIN

Woessner J. Blocking Out the Pain: Electric nerve block treatments for sciatic neuritis. Practical Pain Management. March/April 2002, Volume 2, Issue #2. Read article >

Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW. Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats. Anesth Analg. 2007 Dec;105(6):1830-7. Read article >

Wang YY, Wu SX, Zhou L, Huang J, Wang W, Liu XY, Li YQ. Dose-related antiallodynic effects of cyclic AMP response element-binding protein-antisense oligonucleotide in the spared nerve injury model of neuropathic pain. Neuroscience. 2006;139(3):1083-93. Epub 2006 Mar 3. Read article >

Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain. 2001 Sep;93(3):295-301. Read article >

Hurlé MA, Goirigolzarri I, Valdizán EM. Involvement of the cyclic AMP system in the switch from tolerance into supersensitivity to the antinociceptive effect of the opioid sufentanil. Br J Pharmacol. 2000 May;130(1):174-80. Read article >

Gu X, Bo J, Zhang W, Sun X, Zhang J, Yang Y, Ma Z. Intrathecal administration of cyclic AMP response element-binding protein-antisense oligonucleotide attenuates neuropathic pain after peripheral nerve injury and decreases the expression of N-methyl-D-aspartic receptors in mice. Oncol Rep. 2013 Jul;30(1):391-8. Epub 2013 Apr 30. 2005 Jun 29;3:6. Read article >

Shao X-M, Sun J, Jiang Y-L, Liu B-Y, Shen Z, Fang F, Du J-Y, Wu Y-Y, Wang J-L, Fang J-Q. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model. Neural Plast. 2016; 2016: 5320641. Read article >

Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, Dessauer CW, Van Rijn RM, Watts VJ. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017 Feb 21;10(467). Read article >

Fitzgerald EM, Okuse K, Wood JN, Dolphin AC, Moss SJ. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol. 1999 Apr 15;516 ( Pt 2):433-46. Read article >

Liu L, Yang T, Bruno MJ, Andersen OS, Simon SA. Voltage-gated ion channels in nociceptors: modulation by cGMP. J Neurophysiol. 2004 Oct;92(4):2323-32. Epub 2004 Jun 2. Read article >

Sluka KA. Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin. Br J Pharmacol. 1997 Nov;122(6):1165-73. Read article >

Lee LY, Kwong K, Lin YS, Gu Q. Hypersensitivity of bronchopulmonary C-fibers induced by airway mucosal inflammation: cellular mechanisms. Pulm Pharmacol Ther. 2002;15(3):199-204. Read article >

Gu Q, Ruan T, Hong J-L, Burki N, Lee L-Y. Hypersensitivity of pulmonary C fibers induced by adenosine in anesthetized rats. J Appl Physiol, 01 Sep 2003. Read article >

Middlekauff HR, Doering A, Weiss JN. Circulation. Adenosine enhances neuroexcitability by inhibiting a slow postspike after hyperpolarization in rabbit vagal afferent neurons. 2001 Mar 6;103(9):1325-9. Read article >

Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain. 2019 Nov 12;20(1):105. doi: 10.1186/s10194-019-1055-3. Read article >

Ma Z, Kwong KY, Tovar JP, Paek D. Cyclic adenosine monophosphate induces plasminogen activator inhibitor-1 expression in human mast cells. Biochem Biophys Res Commun. 2010 Oct 1;400(4):569-74. doi: 10.1016/j.bbrc.2010.08.105. Epub 2010 Sep 8. PMID: 20816667. Read article >

Stokes AJ, Wakano C, Del Carmen KA, Koblan-Huberson M, Turner H. Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J Cell Biochem. 2005 Mar 1;94(4):669-83. doi: 10.1002/jcb.20331. Read article >

NERVE TISSUE REGENERATION

Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000 Dec;20(24):9356-63. Read article >

Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001 Jul 1;21(13):4731-9. Read article >

Lau BY, Fogerson SM, Walsh RB, Morgan JR. Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol. 2013 Dec;250:31-42. Epub 2013 Sep 13. Read article >

Knott EP, Assi M, Pearse DD. Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration. BioMed Research International. Volume 2014 (2014). Read article >

Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999 Sep 3;274(36):25842-8. Read article >

Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci. 2010 Mar 3;30(9):3175-83. doi: 10.1523/JNEUROSCI.5464-09.2010. Read article >

Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008 Feb;209(2):321-32. Epub 2007 Aug 27. Read article >

Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002 Jun 13;34(6):895-903. Read article >

Nix WA, Hopf HC. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983;272(1):21-25. doi:10.1016/0006-8993(83)90360-8. Read article >

Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602-2608. doi:10.1523/JNEUROSCI.20-07-02602.2000. Read article >

Gordon T, Udina E, Verge VM, de Chaves EI. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Control. 2009;13(4):412-441. doi:10.1123/mcj.13.4.412.. Read article >

EFFECTS ON INFLAMMATION

Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci. 2008 Feb;84(1):18-25. Epub 2007 Mar 29. Read article >

Yuan X, Arkonac DE, Chao P-HG, Gordana VN. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Nature, Scientific Reports 4, Article number: 3674 (2014). Read article >

Hoyle GW. Mitigation of chlorine lung injury by increasing cyclic AMP levels. Proc Am Thorac Soc. 2010 Jul;7(4):284-9. Read article >

Ji H, Shen XD, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl. 2012 Jun;18(6):659-70. Read article >

Sakaguchi T, Asai T, Belov D. Okada M, Pinsky DJ, Schmidt AM, Naka Y. Influence of ischemic injury on vein graft remodeling: Role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J Thorac Cardiovasc Surg. Volume 129, Issue 1, January 2005, Pages 129-137. Read article >


EFFECTS ON CIRCULATION

Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation. 2014 Aug 5;130(6):496-507. Read article >

Tseng SY, Chao TH, Li YH, Liu PY, Lee CH, Cho CL, Wu HL, Chen JH. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway. J Vasc Surg. 2016 Apr;63(4):1051-62.e3. Read article >

Stott J, Greenwood I. Complex role of Kv7 channels in cGMP and cAMP-mediated relaxations. Channels. 2015;9(3):117-118. Read article >

García-Morales V, Cuíñas A, Elíes J, Campos-Toimil M. PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production. Vascul Pharmacol. 2014 Mar;60(3):95-101. Read article >

Morales-Cano D, Moreno L, Barreira B, Briones AM, Pandolfi R, Moral-Sanz J, Callejo M, Mondejar-Parreño G, Cortijo J, Salaices M, Duarte J, Perez-Vizcaino F, Cogolludo A. Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond). 2016 Oct 1;130(20):1823-36. Clin Sci (Lond). 2016 Oct 1;130(20):1823-36. Read article >

Wong KH, Truslow JG, Tien J. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials. 2010 Jun;31(17):4706-14. Read article > PDF >

INJURED MUSCLE TISSUE REGENERATION

Stewart R, Flechner L, Montminy M, Berdeaux R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One. 2011;6(9):e24714. Epub 2011 Sep 13. Read article >

Kerrick WG, Hoar PE. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981 Jul 16;292(5820):253-5. Read article >

Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E1-17. Epub 2012 Feb 21. Read article >

Young RB, Bridge KY, Strietzel CJ. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures. In Vitro Cell Dev Biol Anim. 2000 Mar;36(3):167-73. Read article >

Satish L, Gallo PH, Baratz ME, Johnson S, Kathju S. Reversal of TGF-β1 stimulation of α-smooth muscle actin and extracellular matrix components by cyclic AMP in Dupuytren's-derived fibroblasts. BMC Musculoskelet Disord. 2011;12:113. Published 2011 May 25. doi:10.1186/1471-2474-12-113. Read article >


WOUND HEALING

Kim MO, Ryu JM, Suh HN, Park SH, Oh YM, Lee SH, Han HJ. cAMP Promotes Cell Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton Remodeling: Implications in Skin Wound Healing. Stem Cells Dev. 2015 Nov 1;24(21):2513-24. Read article >

Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur J Pharmacol. 2013 Feb 28;702(1-3):285-93. Read article >

Pullar CE, Isseroff RR. Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci. 2005 May 1;118(Pt 9):2023-34. Read article >

Zhu K, Sun Y, Miu A, Yen M, Liu B, Zeng Q, Mogilner A, Zhao M. cAMP and cGMP Play an Essential Role in Galvanotaxis of Cell Fragments. J Cell Physiol. 2016 Jun;231(6):1291-300. Read article >

Shibata H, Shioya N, Kuroyanagi Y. Development of new wound dressing composed of spongy collagen sheet containing dibutyryl cyclic AMP. J Biomater Sci Polym Ed. 1997;8(8):601-21. Read article >

Aghajanian J, Hand A, Genutis S, Tatch W, Mednieks M. Expression of Cyclic AMP-Receptor (cARP) Proteins by Fibroblasts in Culture: Effects of Mechanical Disruption. Microsc Microanal 9(Suppl 2), 2003, pp. 1386-1387. Read article >

Rundfeldt C, Steckel H, Sörensen T, Wlaźcorresponding P. The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation. Arch Dermatol Res. 2012 May; 304(4): 313–317. Read article >

Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2006 Mar;27(8):1355-61. Read article >

Lu D, Aroonsakool N, Yokoyama U, Patel HH, Insel PA. Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: a novel therapeutic approach for cardiac fibrosis. Mol Pharmacol. 2013 Dec;84(6):787-93. Read article >

Wong KH, Truslow JG, Tien J. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials. 2010 Jun;31(17):4706-14. Read article >

Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000;13:60-9. Pigment Cell Res. 2000 Apr;13(2):60-9. Read article >

Jumblatt MM, Neufeld AH. Characterization of cyclic AMP-mediated wound closure of the rabbit corneal epithelium. Curr Eye Res. 1981;1(4):189-95. PubMed > Journal site >


INFECTION

Ramdani G, Naissant B, Thompson E, Breil F, Lorthiois A, Dupuy F, Cummings R, Duffier Y, Corbett Y, Mercereau-Puijalon O, Vernick K, Taramelli D, Baker DA, Langsley G, Lavazec C. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission. PLoS Pathog. 2015 May 7;11(5):e1004815. Read article >

Molina-Quirez RC, S-V Cecilia, Brewster J, C-N Eduardo, Levy SB, Camilli A. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli. mBio Jan 2018, 9 (1) e02144-17; DOI: 10.1128/mBio.02144-17. Read article >

CELLULAR APOPTOSIS

Fajardo AM, Piazza GA, Tinsley HN. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers (Basel). 2014 Feb 26;6(1):436-58. Read article >

Gottesman MM, Fleischmann RD. The role of cAMP in regulating tumour cell growth. Cancer Surv. 1986;5(2):291-308. Read article >

Marko D, Romanakis K, Zankl H, Fürstenberger G, Steinbauer B, Eisenbrand G. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys. 1998;28(2-3):75-101. Read article >

Löffler I, Grün M, Böhmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer. 2008 Dec 19;8:380. Read article >

Sheffield LG, Welsch CW. Cholera-toxin-enhanced growth of human breast cancer cell lines in vitro and in vivo: interaction with estrogen. Int J Cancer. 1985 Oct 15;36(4):479-83. Read article >

Lerner A, Kim DH, Lee R. The cAMP signaling pathway as a therapeutic target in lymphoid malignancies. Leuk Lymphoma. 2000 Mar;37(1-2):39-51. Read article >

Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets. 2013 Aug;17(8):937-49. Epub 2013 May 7. Read article >

Insel PA, Wilderman A, Zhang L, Keshwani MM, Zambon AC. Cyclic AMP/PKA-promoted apoptosis: insights from studies of S49 lymphoma cells. Horm Metab Res. 2014 Nov;46(12):854-62. Epub 2014 Jul 16. Read article >


CYCLIC GMP



WOUND HEALING

Zhan R, Yang S, He W, Wang F, Tan J, Zhou J, Yang S, Yao Z, Wu J, Luo G. Nitric oxide enhances keratinocyte cell migration by regulating Rho GTPase via cGMP-PKG signalling. PLoS One. 2015 Mar 23;10(3):e0121551. doi: 10.1371/journal.pone.0121551. eCollection 2015. Read article >

Zhan R, He W, Wang F, et al. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling. Sci Rep 6, 30687 (2016). https://doi.org/10.1038/srep30687. Read article >

Korotkina RN, Nosova IM, Zaĭdenberg MA, Karelin AA. Effect of cyclic guanosine monophosphate on certain indices of muscle tissue carbohydrate metabolism during the wound process. Biull Eksp Biol Med. 1980 Sep;90(9):361-3. Read article >

Abaffy P, Tomankova S, Naraine R, Kubista M, Sindelka R. The role of nitric oxide during embryonic wound healing. BMC Genomics. 2019 Nov 6;20(1):815. doi: 10.1186/s12864-019-6147-6. Read article >

Spitler R, Schwappacher R, Wu T, Kong X, Yokomori K, Pilz RB, Boss GR, Berns MW. Nitrosyl-cobinamide (NO-Cbi), a new nitric oxide donor, improves wound healing through cGMP/cGMP-dependent protein kinase. Cell Signal. 2013 Dec;25(12):2374-82. doi: 10.1016/j.cellsig.2013.07.029. Epub 2013 Aug 3. Read article >

Chen YJ, Wu SC, Wang HC, Wu TH, Yuan SF, Lu TT, Liaw WF, Wang YM. Activation of Angiogenesis and Wound Healing in Diabetic Mice Using NO-Delivery Dinitrosyl Iron Complexes. Mol Pharm. 2019 Oct 7;16(10):4241-4251. doi: 10.1021/acs.molpharmaceut.9b00586. Epub 2019 Sep 5. Read article >


SPINAL CORD INJURY

Marsala J, Orendácová J, Lukácová N, Vanický I. Traumatic injury of the spinal cord and nitric oxide. Prog Brain Res. 2007;161:171-183. doi:10.1016/S0079-6123(06)61011-X. Read article >

Myers SA, DeVries WH, Gruenthal MJ, Andres KR, Hagg T, Whittemore SR. Sildenafil improves epicenter vascular perfusion but not hindlimb functional recovery after contusive spinal cord injury in mice. J Neurotrauma. 2012;29(3):528-538. doi:10.1089/neu.2011.2036. Read article >

Artim DE, Kullmann FA, Daugherty SL, Bupp E, Edwards CL, de Groat WC. Developmental and spinal cord injury-induced changes in nitric oxide-mediated inhibition in rat urinary bladder. Neurourol Urodyn. 2011;30(8):1666-1674. doi:10.1002/nau.21143. Read article >

CONTACT US