SUPPORTING LITERATURE

RESEARCH ARTICLES: SILVER IONTOPHORESIS

SILVER IONTOPHORESIS

Becker RO, Spadaro JA. Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. J Bone Joint Surg Am. 1978 Oct;60(7):871-81. Read article >

Nand S, Sengar GK, Nand S, Jain VK, Gupta TD. Dual use of silver for management of chronic bone infections and infected non-unions. J Indian Med Assoc. 1996 Mar;94(3):91-5. Read article >

Webster DA, Spadaro JA, Becker RO, Kramer S. Silver anode treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1981 Nov-Dec;(161):105-14. Read article >

Becker RO. Processes and products involving cell modification. US 4528265 A. Jul 9, 1985. Read article >

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J Trauma. 1988 Oct;28(10):1488-92. Read article >

Satyanand, Saxena AK, Agarwal A. Silver iontophoresis in chronic osteomyelitis. J Indian Med Assoc. 1986 May;84(5):134-6. Read article >

Uezono H. Effect of weak direct current with silver electrodes on bacterial growth. Nihon Seikeigeka Gakkai Zasshi. 1990 Sep;64(9):860-7. Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan. Read article >

Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis. 1996 Feb;173(2):495-8. Read article >


LOW VOLTAGE IONTOPHORESIS

Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J. 1998 Feb;74(2 Pt 1):843-56. Read article >

Kasting GB, Bowman LA. DC electrical properties of frozen, excised human skin. Pharm Res. 1990 Feb;7(2):134-43. Read article >


RESEARCH ARTICLES: SILVER-NYLON ANTIMICROBIAL DEVICE

SILVER-NYLON: EFFECTIVE ANTIMICROBIAL DEVICE

Deitch EA, Marino AA, Malakanok V, Albright JA. Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma. 1987 Mar;27(3):301-4. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >

MacKeen PC, Person S, Warner SC, Snipes W, Stevens Jr SE. Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother. Jan 1987; 31(1): 93–99. Read article >

Deitch EA, Marino AA, Gillespie TE, Albright JA. Silver-nylon: a new antimicrobial agent. Antimicrob Agents Chemother. 1983 Mar;23(3):356-9. Read article >

Krieger BR, Davis DM, Sanchez JE, Mateka JJ, Nfonsam VN, Frattini JC, Marcet JE. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis Colon Rectum. 2011 Aug;54(8):1014-9. Read article >

Barillo DJ, Pozza M, Margaret-Brandt M. A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns. 2014 Dec;40 Suppl 1:S24-9. Read article >

Abboud EC, Settle JC, Legare TB, Marcet JE, Barillo D3, Sanchez JE. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns. 2014 Dec;40 Suppl 1:S30-9. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >

RESEARCH ARTICLES: SILVER ION—BROAD SPECTRUM ANTIMICROBIAL

SILVER IONS AND NANOPARTICLES: EFFECTS ON BACTERIA AND VIRUSES

Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial Effects of Silver Electrodes with Weak Direct Current. Antimicrobial Agents and Chemotherapy 1974;6(5):637-642. Read article >

Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells. Antimicrobial Agents and Chemotherapy 1976;9(2):357-358. Read article >

Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine 2013;5(190):190ra81. Read article >

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997 Oct;25(4):279-83. Read article >

Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012 Aug 8;12(8):4271-5. Epub 2012 Jul 9. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Chen N, Zheng Y, Yin J, Li X, Zheng C. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods. 2013 Nov;193(2):470-7. Epub 2013 Jul 22. Read article >

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology 2010;8:1. Read article >

Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine 2013;8:4303-4314. Read article >

Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005 Jun 29;3:6. Read article >

Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17-34. Read article >

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003 Jun;27(2-3):341-53. Read article >

RESEARCH ARTICLES: LOW INTENSITY DIRECT CURRENT (DC)

LOW INTENSITY DIRECT CURRENT (DC)

Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS One. 2013;8(2):e55118. doi: 10.1371/journal.pone.0055118. Epub 2013 Feb 4. Read article > Open access article >

Ruiz-Ruigomez M, Badiola J, Schmidt-Malan SM, Greenwood-Quaintance K, Karau MJ, Brinkman CL, Mandrekar JN, Patel R. Direct electrical current reduces bacterial and yeast biofilm formation. International Journal of Bacteriology. Volume 2016 (2016). Read article >

Liu WK, Brown MR, Elliott TS. Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother. 1997 Jun;39(6):687-95. Read article > View or download PDF >

Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015 Aug;59(8):4610-5. Read article >

Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009 Oct;53(10):4064-8. doi: 10.1128/AAC.00432-09. Epub 2009 Aug 3. Read article > View or download PDF >

Rowley BA, McKenna JM, Chase GR, Wolcott LE. The influence of electrical currents on infecting microorganism in wounds. Ann N Y Acad Sci. 1974;238:543-51. Read article >

Tronstad L, Trope M, Hammond BF. Effect of electric current and silver electrodes on oral bacteria. Dental Traumatology, 1: 112–115. doi:10.1111/j.1600-9657.1985.tb00572.x Read article >

Kalinowski DP, Edsberg LE, Hewson RA, Johnson RH, Brogan MS. Low-voltage direct current as a fungicidal agent for treating onychomycosis. J Am Podiatr Med Assoc. 2004 Nov-Dec;94(6):565-72. Read article >

Thibodeau EA, Handelman SL, Marquis RE. Inhibition and killing of oral bacteria by silver ions generated with low intensity direct current. J Dent Res. 1978 Sep-Oct;57(9-10):922-6. Read article >

Hall RE, Bender G, Marquis RE. In vitro effects of low intensity direct current generated silver on eukaryotic cells. J Oral Maxillofac Surg. 1988 Feb;46(2):128-33. Read article >

RESEARCH ARTICLES: DIELECTROPHORESIS

DIELECTROPHORESIS

Pohl HA, Hawk I. Separation of living and dead cells by dielectrophoresis. Science. 1966 Apr 29;152(3722):647-9. Read article >

Cetin B, Li D. Electrophoresis. 2011 Sep;32(18):2410-27. Dielectrophoresis in microfluidics technology. Read article >

Kumar SB, Mathew KT, Raveendranath U, Augustine P. Dielectric properties of certain biological materials at microwave frequencies. J Microw Power Electromagn Energy. 2001;36(2):67-75. Read article >

Archer S, Rixon FJ, Morgan H. Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys J. 1999 May; 76(5): 2833–2842. Read article >

Bonincontro A, Melucci-Vigo G, Risuleo G.Biosci Rep. Mouse polyomavirus mediated effects on the infected cell membrane studied by dielectric spectroscopy. J Microw Power Electromagn Energy. 2001;36(2):67-75. Read article >

Choi S, Lee G, Park IS, Son M, Kim W, Lee H, Lee SY, Na S, Yoon DS, Bashir R, Park J, Lee SW. Detection of Silver Ions Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Anal Chem. 2016 Jul 20. Read article >

RESEARCH ARTICLES: ANTIBIOTIC-RESISTANT BACTERIA

ANTIBIOTIC-RESISTANT BACTERIA

Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine. 2013;5(190):190ra81. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Lara HH, Ayala-Núñez NV, Turrent L-D-CI, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. April 2010, Volume 26, Issue 4, pp 615–621. Read article >

Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112: 841–852, 2012. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr, Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Thapa R, Bhagat C, Shrestha P, Awal S, Dudhagara P. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials. 2017;16:39. Read article >

Lkhagvajav N, Yasa I,Celik E, Koizhaiganova M, Sari O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Digest Journal of Nanomaterials and Biostructures Vol. 6, No 1, January-March 2011, p. 149-154. Read article > View or download PDF >

Gupta LK, Jindal R, Beri HK, Chhibber S. Virulence of silver-resistant mutant of Klebsiella pneumoniae in burn wound model. Folia Microbiol (Praha). 1992;37(4):245-8. Read article >

Kalan LR, Pepin DM, Ul-Haq I, Miller SB, Hay ME, Precht RJ. Targeting biofilms of multidrug-resistant bacteria with silver oxynitrate. Int J Antimicrob Agents. 2017 Jun;49(6):719-726. Read article >

Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová Š, Froning JP, Havrdová M, Prucek R, Zbořil R, Kvítek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. 2016 Jun 1;142:392-9. Read article >

Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015 Oct 5;13:64. Read article >

Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci. 2017 Mar 6;18(3). Read article >

Zou L, Lu J, Wang J, Ren X, Zhang L, Gao Y, Rottenberg ME, Holmgren A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol Med. 2017 Jun 12. Read article >

Percival SL, Thomas J, Linton S, Okel T, Corum L, Slone W. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds. Int Wound J. 2012 Oct;9(5):488-93. Read article >

RESEARCH ARTICLES: BIOELECTRIC WOUND HEALING

BIOELECTRIC WOUND HEALING AND CELL MODIFICATION

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Illingworth CM, Barker AT. Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin. Phys. Physiol. Meas. 1 87, 1980. Read article >

Reid B, Zhao M. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. Advances in Wound Care. 2014;3(2):184-201. Read article >

Levin M. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Seminars in cell & developmental biology. 2009;20(5):543-556. Read article >

Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol.2009 Aug;20(6):674-82. Read article >

Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 1982 Mar;242(3):R358-66. Read article >

Spence DW, Pomeranz B. Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiol Meas. 1996 May;17(2):57-69. Read article >

Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen. 2011 Sep-Oct;19(5). Read article >

Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013 Aug 19;8(8):e71660. Read article >

Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996 Jan;109 (Pt 1):199-207. Read article >

Kloth LC, McCulloch JM. Promotion of wound healing with electrical stimulation. Adv Wound Care. 1996 Sep-Oct;9(5):42-5. Read article >

Talebi G, Torkaman G, Firoozabadi M, Shariat S. Effect of anodal and cathodal microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs. J Rehabil Res Dev. 2008;45(1):153-9. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJS. Imaging the electric field associated with mouse and human skin wounds. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(3):432-441. Read article >

Reger SI, Hyodo A, Negami S, Kambic HE, Sahgal V. Experimental wound healing with electrical stimulation. Artif Organs. 1999 May;23(5):460-2. Read article >

LerCinovic A, Bobanovic F, Vodovnik L. Endogenous potentials in two different models of human skin injuries. Bioelectrochemistry and Bioenergetics, 30 (I993) 221-227. Read article >

Becker RO. Induced dedifferentiation: a possible alternative to embryonic stem cell transplants. NeuroRehabilitation. 2002;17(1):23-31. Read article >

Harrington DB, Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res. 1973 Jan;76(1):95-8. Read article >

Becker RO, Murray DG. A method for producing cellular dedifferentiation by means of very small electrical currents. Trans N Y Acad Sci. 1967 Mar;29(5):606-15. Read article > View or download PDF >

Thakral G, LaFontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabetic Foot & Ankle. 2013;4:10.3402/dfa.v4i0.22081. Read article >

McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005 Jul;85(3):943-78. Read article >

Ud-Din S, Bayat A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2(4), 445-467. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJ. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen. 2008 May-Jun;16(3):432-41. Read article >

Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010 Mar 1;5(3):468-75. Read article >

Messerli MA, Graham DM. Extracellular Electrical Fields Direct Wound Healing and Regeneration. Biol Bull. 2011, Aug;221(1):79-92. Read article >

Balakatounis KC, Angoules AG. Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury. Eplasty. 2008;8:e28. Read article >

Karba R, Dejan Šemrov, Vodovnik L, Benko H, Sˇavrin R. DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics, Volume 43, Issue 2, August 1997, Pages 265-270. Read article >

RESEARCH ARTICLES: CYCLIC AMP UTILIZATION

EFFECTS ON PAIN

Woessner J. Blocking Out the Pain: Electric nerve block treatments for sciatic neuritis. Practical Pain Management. March/April 2002, Volume 2, Issue #2. Read article >

Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW. Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats. Anesth Analg. 2007 Dec;105(6):1830-7. Read article >

Wang YY, Wu SX, Zhou L, Huang J, Wang W, Liu XY, Li YQ. Dose-related antiallodynic effects of cyclic AMP response element-binding protein-antisense oligonucleotide in the spared nerve injury model of neuropathic pain. Neuroscience. 2006;139(3):1083-93. Epub 2006 Mar 3. Read article >

Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain. 2001 Sep;93(3):295-301. Read article >

Hurlé MA, Goirigolzarri I, Valdizán EM. Involvement of the cyclic AMP system in the switch from tolerance into supersensitivity to the antinociceptive effect of the opioid sufentanil. Br J Pharmacol. 2000 May;130(1):174-80. Read article >

Gu X, Bo J, Zhang W, Sun X, Zhang J, Yang Y, Ma Z. Intrathecal administration of cyclic AMP response element-binding protein-antisense oligonucleotide attenuates neuropathic pain after peripheral nerve injury and decreases the expression of N-methyl-D-aspartic receptors in mice. Oncol Rep. 2013 Jul;30(1):391-8. Epub 2013 Apr 30. 2005 Jun 29;3:6. Read article >

Shao X-M, Sun J, Jiang Y-L, Liu B-Y, Shen Z, Fang F, Du J-Y, Wu Y-Y, Wang J-L, Fang J-Q. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model. Neural Plast. 2016; 2016: 5320641. Read article >

Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, Dessauer CW, Van Rijn RM, Watts VJ. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017 Feb 21;10(467). Read article >

Fitzgerald EM, Okuse K, Wood JN, Dolphin AC, Moss SJ. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol. 1999 Apr 15;516 ( Pt 2):433-46. Read article >

Liu L, Yang T, Bruno MJ, Andersen OS, Simon SA. Voltage-gated ion channels in nociceptors: modulation by cGMP. J Neurophysiol. 2004 Oct;92(4):2323-32. Epub 2004 Jun 2. Read article >

Sluka KA. Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin. Br J Pharmacol. 1997 Nov;122(6):1165-73. Read article >

NEVER TISSUE REGENERATION

Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000 Dec;20(24):9356-63. Read article >

Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001 Jul 1;21(13):4731-9. Read article >

Lau BY, Fogerson SM, Walsh RB, Morgan JR. Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol. 2013 Dec;250:31-42. doi: 10.1016/j.expneurol.2013.09.004. Epub 2013 Sep 13. Read article >

Knott EP, Assi M, Pearse DD. Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration. BioMed Research International. Volume 2014 (2014). Read article >

Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999 Sep 3;274(36):25842-8. Read article >

Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci. 2010 Mar 3;30(9):3175-83. doi: 10.1523/JNEUROSCI.5464-09.2010. Read article >

Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008 Feb;209(2):321-32. Epub 2007 Aug 27. Read article >

Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002 Jun 13;34(6):895-903. Read article >

ANTI-INFLAMMATORY EFFECTS

Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci. 2008 Feb;84(1):18-25. Epub 2007 Mar 29. Read article >

Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci. 2008 Feb;84(1):18-25. Epub 2007 Mar 29. Read article >

Yuan X, Arkonac DE, Chao P-HG, Gordana VN. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Nature, Scientific Reports 4, Article number: 3674 (2014). Read article >

Hoyle GW. Mitigation of chlorine lung injury by increasing cyclic AMP levels. Proc Am Thorac Soc. 2010 Jul;7(4):284-9. Read article >

Ji H, Shen XD, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl. 2012 Jun;18(6):659-70. Read article >

Sakaguchi T, Asai T, Belov D. Okada M, Pinsky DJ, Schmidt AM, Naka Y. Influence of ischemic injury on vein graft remodeling: Role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. The Journal of Thoracic and Cardiovascular Surgery. Volume 129, Issue 1, January 2005. Read article >

MUSCLE TISSUE INJURY REGENERATION

Stewart R, Flechner L, Montminy M, Berdeaux R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One. 2011;6(9):e24714. Epub 2011 Sep 13. Read article >

Kerrick WG, Hoar PE. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981 Jul 16;292(5820):253-5. Read article >

Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E1-17. Epub 2012 Feb 21. Read article >

CELLULAR APOPTOSIS

Fajardo AM, Piazza GA, Tinsley HN. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers (Basel). 2014 Feb 26;6(1):436-58. Read article >

Gottesman MM, Fleischmann RD. The role of cAMP in regulating tumour cell growth. Cancer Surv. 1986;5(2):291-308. Read article >

Marko D, Romanakis K, Zankl H, Fürstenberger G, Steinbauer B, Eisenbrand G. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys. 1998;28(2-3):75-101. Read article >

Löffler I, Grün M, Böhmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer. 2008 Dec 19;8:380. Read article >

Sheffield LG, Welsch CW. Cholera-toxin-enhanced growth of human breast cancer cell lines in vitro and in vivo: interaction with estrogen. Int J Cancer. 1985 Oct 15;36(4):479-83. Read article >

Lerner A, Kim DH, Lee R. The cAMP signaling pathway as a therapeutic target in lymphoid malignancies. Leuk Lymphoma. 2000 Mar;37(1-2):39-51. Read article >

Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets. 2013 Aug;17(8):937-49. Epub 2013 May 7. Read article >

Fajardo AM, Piazza GA, Tinsley HN. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers. 2014;6(1):436-458. Read article >

Insel PA, Wilderman A, Zhang L, Keshwani MM, Zambon AC. Cyclic AMP/PKA-promoted apoptosis: insights from studies of S49 lymphoma cells. Horm Metab Res. 2014 Nov;46(12):854-62. Epub 2014 Jul 16. Read article >