There is extensive, international medical-scientific peer-reviewed published documentation, including data-based journal articles, patents in the USA and Australia, clinical studies and hospital applications, spanning three decades, that support the clinical application and effectiveness of silver iontophoresis. Altogether, this large body of medical-scientific literature supports: ​

  • The silver-nylon cloth electrode as a highly effective silver ion delivery device

  • Electrically generated silver ions as broad and powerful acting agents on the 'microenvironments' of bacterially and virally infected cells and tissues

  • Electrically generated silver ions as extraordinary wound healing and tissue regeneration agents

The development of the SIS machines and SIS electrode technology has been strongly clinical practise and data-based, drawing extensively and directly from much of the available literature.

Research articles

Here are many of the key, supporting international medical-scientific journal published articles from which the SIS Machines Project has been data-based.

These references are arranged below under the following headings:



Becker RO, Spadaro JA. Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. J Bone Joint Surg Am. 1978 Oct;60(7):871-81. Read article >

Nand S, Sengar GK, Nand S, Jain VK, Gupta TD. Dual use of silver for management of chronic bone infections and infected non-unions. J Indian Med Assoc. 1996 Mar;94(3):91-5. Read article >

Webster DA, Spadaro JA, Becker RO, Kramer S. Silver anode treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1981 Nov-Dec;(161):105-14. Read article >

Becker RO. Processes and products involving cell modification. US 4528265 A. Jul 9, 1985. Read article >

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J Trauma. 1988 Oct;28(10):1488-92. Read article >

Satyanand, Saxena AK, Agarwal A. Silver iontophoresis in chronic osteomyelitis. J Indian Med Assoc. 1986 May;84(5):134-6. Read article >

Uezono H. Effect of weak direct current with silver electrodes on bacterial growth. Nihon Seikeigeka Gakkai Zasshi. 1990 Sep;64(9):860-7. Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan. Read article >

Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis. 1996 Feb;173(2):495-8. Read article >


Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J. 1998 Feb;74(2 Pt 1):843-56. Read article >

Kasting GB, Bowman LA. DC electrical properties of frozen, excised human skin. Pharm Res. 1990 Feb;7(2):134-43. Read article >


Deitch EA, Marino AA, Malakanok V, Albright JA. Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma. 1987 Mar;27(3):301-4. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >

MacKeen PC, Person S, Warner SC, Snipes W, Stevens Jr SE. Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother. Jan 1987; 31(1): 93–99. Read article >

Deitch EA, Marino AA, Gillespie TE, Albright JA. Silver-nylon: a new antimicrobial agent. Antimicrob Agents Chemother. 1983 Mar;23(3):356-9. Read article >

Krieger BR, Davis DM, Sanchez JE, Mateka JJ, Nfonsam VN, Frattini JC, Marcet JE. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis Colon Rectum. 2011 Aug;54(8):1014-9. Read article >

Barillo DJ, Pozza M, Margaret-Brandt M. A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns. 2014 Dec;40 Suppl 1:S24-9. Read article >

Abboud EC, Settle JC, Legare TB, Marcet JE, Barillo D3, Sanchez JE. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns. 2014 Dec;40 Suppl 1:S30-9. Read article >

Becker RO. Silver ions in the treatment of local infections. Met Based Drugs. 1999;6(4-5):311-4. Read article >


Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial Effects of Silver Electrodes with Weak Direct Current. Antimicrobial Agents and Chemotherapy 1974;6(5):637-642. Read article >

Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells. Antimicrobial Agents and Chemotherapy 1976;9(2):357-358. Read article >

Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine 2013;5(190):190ra81. Read article >

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997 Oct;25(4):279-83. Read article >

Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012 Aug 8;12(8):4271-5. Epub 2012 Jul 9. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Chen N, Zheng Y, Yin J, Li X, Zheng C. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods. 2013 Nov;193(2):470-7. Epub 2013 Jul 22. Read article >

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology 2010;8:1. Read article >

Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine 2013;8:4303-4314. Read article >

Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005 Jun 29;3:6. Read article >

Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17-34. Read article >

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003 Jun;27(2-3):341-53. Read article >



Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Illingworth CM, Barker AT. Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin. Phys. Physiol. Meas. 1 87, 1980. Read article >

Reid B, Zhao M. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. Advances in Wound Care. 2014;3(2):184-201. Read article >

Levin M. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Seminars in cell & developmental biology. 2009;20(5):543-556. Read article >

Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol.2009 Aug;20(6):674-82. Read article >

Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 1982 Mar;242(3):R358-66. Read article >

Spence DW, Pomeranz B. Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiol Meas. 1996 May;17(2):57-69. Read article >

Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen. 2011 Sep-Oct;19(5). Read article >

Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013 Aug 19;8(8):e71660. Read article >

Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996 Jan;109 (Pt 1):199-207. Read article >

Kloth LC, McCulloch JM. Promotion of wound healing with electrical stimulation. Adv Wound Care. 1996 Sep-Oct;9(5):42-5. Read article >

Talebi G, Torkaman G, Firoozabadi M, Shariat S. Effect of anodal and cathodal microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs. J Rehabil Res Dev. 2008;45(1):153-9. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJS. Imaging the electric field associated with mouse and human skin wounds. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(3):432-441. Read article >

Reger SI, Hyodo A, Negami S, Kambic HE, Sahgal V. Experimental wound healing with electrical stimulation. Artif Organs. 1999 May;23(5):460-2. Read article >

LerCinovic A, Bobanovic F, Vodovnik L. Endogenous potentials in two different models of human skin injuries. Bioelectrochemistry and Bioenergetics, 30 (I993) 221-227. Read article >

Becker RO. Induced dedifferentiation: a possible alternative to embryonic stem cell transplants. NeuroRehabilitation. 2002;17(1):23-31. Read article >

Harrington DB, Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res. 1973 Jan;76(1):95-8. Read article >

Becker RO, Murray DG. A method for producing cellular dedifferentiation by means of very small electrical currents. Trans N Y Acad Sci. 1967 Mar;29(5):606-15. Read article > View or download PDF >

Thakral G, LaFontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabetic Foot & Ankle. 2013;4:10.3402/dfa.v4i0.22081. Read article >

McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005 Jul;85(3):943-78. Read article >

Ud-Din S, Bayat A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2(4), 445-467. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJ. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen. 2008 May-Jun;16(3):432-41. Read article >

Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010 Mar 1;5(3):468-75. Read article >

Messerli MA, Graham DM. Extracellular Electrical Fields Direct Wound Healing and Regeneration. Biol Bull. 2011, Aug;221(1):79-92. Read article >

Balakatounis KC, Angoules AG. Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury. Eplasty. 2008;8:e28. Read article >

Karba R, Dejan Šemrov, Vodovnik L, Benko H, Sˇavrin R. DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics, Volume 43, Issue 2, August 1997, Pages 265-270. Read article >



Pohl HA, Hawk I. Separation of living and dead cells by dielectrophoresis. Science. 1966 Apr 29;152(3722):647-9. Read article >

Cetin B, Li D. Electrophoresis. 2011 Sep;32(18):2410-27. Dielectrophoresis in microfluidics technology. Read article >

Kumar SB, Mathew KT, Raveendranath U, Augustine P. Dielectric properties of certain biological materials at microwave frequencies. J Microw Power Electromagn Energy. 2001;36(2):67-75. Read article >

Archer S, Rixon FJ, Morgan H. Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys J. 1999 May; 76(5): 2833–2842. Read article >

Bonincontro A, Melucci-Vigo G, Risuleo G.Biosci Rep. Mouse polyomavirus mediated effects on the infected cell membrane studied by dielectric spectroscopy. J Microw Power Electromagn Energy. 2001;36(2):67-75. Read article >

Choi S, Lee G, Park IS, Son M, Kim W, Lee H, Lee SY, Na S, Yoon DS, Bashir R, Park J, Lee SW. Detection of Silver Ions Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Anal Chem. 2016 Jul 20. Read article >


Searle A, Kirkup L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas. 2000 May;21(2):271-83. Read article >

Chi MY, Jung T-P, Cauwenberghs G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Reviews in Biomedical Engineering, Volume 3, 03 December 2010. Read article >

Ahn AC, Martinsen ØG. Electrical Characterization of Acupuncture Points: Technical Issues and Challenges. J Altern Complement Med. 2007 Oct; 13(8): 817–824. Read article >


Integration of Silver Iontophoresis Principles in a Device for Bacterial and Viral Infection Treatments, Wound Healing, Tissue Repair and Regeneration.

Richard Malter, James Woessner.

31th Annual International Symposium on Acupuncture, Electro-Therapeutics and Latest Advancements in Integrated Medicine. May 01-03, 2015, São Paulo, Brazil.

View or download